Experimental

The title compound was prepared as described by Couper et al. (1998). Suitable crystals were obtained directly from the synthesis; they were relatively large and could not be cut without causing damage which resulted in a deterioration of the diffraction pattern.

Crystal data

$\left[\mathrm{Li}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{~N}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{~N}_{2}\right)\right] \quad$ Mo $K \alpha$ radiation
$M_{r}=354.47$
Triclinic
$P \overline{1}$
$a=7.904$ (5) \AA
$b=8.899(6) \AA$
$c=9.335(7) \AA$
$\alpha=108.26(4)^{\circ}$
$\beta=112.63(3)^{\circ}$
$\gamma=91.41(3)^{\circ}$ 。
$V=567.6(7) \AA^{3}$
$Z=1$
$D_{x}=1.037 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Stoe-Siemens diffractometer
with Cryostream cooler
(Cosier \& Glazer, 1986)
ω / θ scans
Absorption correction: none 4012 measured reflections
2004 independent reflections
1631 reflections with
$I>2 \sigma(I)$
$\lambda=0.71073 \AA$
Cell parameters from 30 reflections
$\theta=8.5-12.0^{\circ}$
$\mu=0.060 \mathrm{~mm}^{-1}$
$T=160$ (2) K
Block
$1.15 \times 0.85 \times 0.65 \mathrm{~mm}$
Colourless

$$
\begin{aligned}
& R_{\text {int }}=0.026 \\
& \theta_{\max }=24.99^{\circ} \\
& h=-9 \rightarrow 9 \\
& k=-10 \rightarrow 10 \\
& l=-11 \rightarrow 11 \\
& 5 \text { standard reflections } \\
& \text { frequency: } 60 \mathrm{~min} \\
& \text { intensity decay: } 2.9 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}
$(\Delta / \sigma)_{\text {max }}<0.001$.
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.109$
$S=1.027$
2004 reflections
122 parameters
H atoms: see below
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0552 P)^{2}\right.$
$+0.1264 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
Table 1. Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$

$\mathrm{Li}-\mathrm{N} 1$	$2.038(3)$	$\mathrm{Li}-\mathrm{N} 2$	$2.161(2)$
$\mathrm{Li}-\mathrm{N} 1^{\mathrm{i}}$	$2.050(3)$		
$\mathrm{N} 1-\mathrm{Li}-\mathrm{N} 1^{\mathrm{i}}$	$107.89(11)$	$\mathrm{Li}-\mathrm{N} 1-\mathrm{Li}^{\mathrm{i}}$	$72.11(11)$
$\mathrm{N} 1-\mathrm{Li}-\mathrm{N} 2$	$133.67(11)$	$\mathrm{C} 8-\mathrm{N} 2-\mathrm{Li}$	$122.92(10)$
$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Li}-\mathrm{N} 2$	$118.15(11)$	$\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 8^{\mathrm{ii}}$	$113.35(13)$
$\mathrm{C} 1 — \mathrm{~N} 1-\mathrm{C} 5$	$106.17(11)$		
Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $1-x, 2-y, 1-z$.			

H atoms were placed geometrically and refined with a riding model (including free rotation about $\mathrm{C}-\mathrm{C}$ bonds), and with $U_{\text {iso }}$ constrained to be 1.2 (1.5 for methyl groups) times $U_{\text {eq }}$ of the carrier atom.

Data collection: DIF4 (Stoe \& Cie, 1988). Cell refinement: DIF4. Data reduction: local programs. Program(s) used to
solve structure: SHELXTL (Sheldrick, 1994). Program(s) used to refine structure: SHELXTL. Molecular graphics: SHELXTL. Software used to prepare material for publication: SHELXTL and local programs.

We thank the EPSRC (UK) and Zeneca Resins for financial support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: LN1078). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. \& Kennard, O. (1993). Chem. Des. Autom. News, 8, 31-37.
Barnett, N. D. R., Mulvey, R. E., Clegg, W. \& O'Neil, P. A. (1991). J. Am. Chem. Soc. 113, 8187-8188.

Bernstein, M. P., Romesberg, F. E., Fuller, D. J., Harrison, A. T., Collum, D. B., Liu, Q.-Y. \& Williard, P. G. (1992). J. Am. Chem. Soc. 114, 5100-5110.
Braunschweig, H., Gehrhus, B., Hitchcock, P. B. \& Lappert, M. F. (1995). Z. Anorg. Allg. Chem. 621, 1922-1928.

Cosier, J. \& Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
Couper, S. A., Mulvey, R. E. \& Sherrington, D. C. (1998). Eur. Polym. J. 34, 1877-1887.

Kerby, M. C., Eichhorn, B. W., Creighton, J. A. \& Vollhardt, K. P. C. (1990). Inorg. Chem. 29, 1319-1323.

Malik, M. A., Motevalli, M., O'Brien, P. \& Walsh, J. R. (1997). Inorg. Chem. 36, 1263-1264.
Palenik, G. J. (1964). Acta Cryst. 17, 1573-1580.
Sheldrick, G. M. (1994). SHELXTL. Structure Determination Programs. Version 5.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Stoe \& Cie (1988). DIF4. Diffractometer Control Program. Version 7.04. Stoe \& Cie, Darmstadt, Germany.

Acta Cryst. (1999). C55, 869-871

Dichlorobis(2-hydroxymethyl-1-methyl-imidazole- N^{3})zinc(II)

Shi-Ping Yang, La-Sheng Long, Xiao-Ming Chen and Liang-Nian J_{I}

School of Chemistry and Chemical Engineering, Zhongshan University, Guangzhou 510275, People's Republic of China.
E-mail: cedc03@zsu.edu.cn
(Received 27 November 1998; accepted 4 February 1999)

Abstract

The crystal structure of the title complex, $\left[\mathrm{ZnCl}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{8}-\right.\right.$ $\left.\mathrm{N}_{2} \mathrm{O}\right)_{2}$], is composed of discrete molecules. The $\mathrm{Zn}^{\mathrm{II}}$ atom is coordinated by two chloride ligands and two N atoms from the imidazole ligands in a distorted tetrahedral coordination environment, with $\mathrm{Zn}-\mathrm{N}$ distances of

1.998 (5) and 2.005 (5) $\AA, \mathrm{Zn}-\mathrm{Cl}$ distances of 2.230 (2) and 2.247 (2) \AA, and $\mathrm{N}-\mathrm{Zn}-\mathrm{N}$ and $\mathrm{Cl}-\mathrm{Zn}-\mathrm{Cl}$ angles of $111.15(19)$ and $114.59(8)^{\circ}$, respectively.

Comment

Metal complexes of imidazole and its derivatives are of current interest in the investigation of model complexes relevant to metalloenzymes, since imidazole, a residue of histidine, is frequently found to ligate metal ions in the active centres of metalloenzymes. Only a limited number of zinc(II) imidazole complexes have been structurally characterized (Chen et al., 1994, 1996; Kimura et al., 1991). In the course of our systematic study of metal complexes of imidazole-like ligands, we have isolated the title complex, $\left[\mathrm{ZnCl}_{2}(\mathrm{MeImOH})_{2}\right]$ (MeImOH is 2-hydroxy-methyl-1-methylimidazole; Pallee \& Henning, 1966), (I), and report herein its preparation and structure.

(I)

The crystal structure of (I) consists of discrete $\left[\mathrm{ZnCl}_{2}-\right.$ $(\mathrm{MeImOH})_{2}$] molecules. The $\mathrm{Zn}^{1 \mathrm{I}}$ atom is coordinated by two chloride ligands and an N atom from each of two MeImOH ligands in a distorted tetrahedral coordination environment (Fig. 1). The $\mathrm{Zn}-\mathrm{N}$ bond lengths [1.998 (5) and 2.005 (5) Å] are comparable to the $\mathrm{Zn}-\mathrm{N}_{\mathrm{Him}}$ (Him = imidazole) bond lengths found in tetrahedrally coordinated $\mathrm{Zn}^{\mathrm{II}}$ complexes, such as $\left[\mathrm{Zn}(\mathrm{Him})_{2}\left(\mathrm{MeCO}_{2}\right)_{2}\right][1.996$ (2) and 2.003 (3) \AA; Chen et al., 1994] and $\left[\mathrm{Zn}(\mathrm{Him})_{2}\left(\mathrm{ClO}_{4}\right)_{2}\right]$ ($1.999 \AA$; Bear et al., 1975). The $\mathrm{Zn}-\mathrm{Cl}$ bond lengths [2.230(2) and $2.247(2) \AA$] are also comparable to those found

Fig. 1. ORTEP-3 (Farrugia, 1997) plot showing the molecular structure of (I), with 35% probability displacement ellipsoids. H atoms are drawn as spheres of arbitrary radii.
in aquadichloro(pyridine betaine)zinc(II) [2.219(1) and 2.231 (1) \AA] and dichlorobis(pyridine betaine)zinc(II) [2.238 (2) and 2.262 (1) Å] (Chen \& Mak, 1991). Bond angles at the Zn atom deviate from the ideal value of 109.5°.
The structure is consolidated by extensive intermolecular hydrogen bonds between chloride ligands and the hydroxyl group of the organic ligands. Adjacent discrete molecules are bridged by hydrogen bonds between atoms Cll and Ol , and by bifurcated hydrogen bonds between three hydroxyl groups from the organic ligands (Table 2). This hydrogen bonding produces a threedimensional network in the solid.

Experimental

An aqueous solution (5 ml) of $\mathrm{ZnCl}_{2}(0.14 \mathrm{~g}, 1.0 \mathrm{mmol})$ was added to an aqueous ethanolic solution (10 ml) of MeImOH $(0.22 \mathrm{~g}, 2 \mathrm{mmol})$. The mixture was stirred for 20 min . The resulting solution was allowed to stand in air, and colourless crystals of the title complex were formed after one month.

Crystal data

$\left[\mathrm{ZnCl}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=360.54$
Monoclinic
$P 2_{1} / n$
$a=7.281$ (2) \AA 。
$b=16.084$ (7) \AA
$c=12.849(6) \AA$
$\beta=100.51(2)^{\circ}$
$V=1479.5(10) \AA^{3}$
$Z=4$
$D_{x}=1.619 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens $R 3 m$ diffractometer ω scans
Absorption correction:
empirical via ψ scans
(North et al., 1968)
$T_{\text {min }}=0.458, T_{\text {max }}=0.603$
3127 measured reflections
2894 independent reflections
1924 reflections with
$I>2 \sigma(I)$
Refinement
Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.060$
$w R\left(F^{2}\right)=0.166$
$S=1.033$
2894 reflections
172 parameters
H atoms treated by a mixture of independent and constrained refinement
Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25
\quad reflections
$\theta=7.5-15.0^{\circ}$
$\mu=2.024 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Block
$0.60 \times 0.50 \times 0.25 \mathrm{~mm}$
Colourless

$$
\begin{aligned}
& R_{\text {int }}=0.025 \\
& \theta_{\max }=26^{\circ} \\
& h=0 \rightarrow 8 \\
& k=0 \rightarrow 19 \\
& l=-15 \rightarrow 15 \\
& 2 \text { standard reflections } \\
& \quad \text { every } 118 \text { reflections } \\
& \text { intensity decay: } 1.1 \%
\end{aligned}
$$

Table 1. Selected geometric parameters $\left(\AA,^{\circ}\right)$

$\mathrm{Zn} 1-\mathrm{N} 1$	$1.998(5)$	$\mathrm{Znl}-\mathrm{Cl} 2$	$2.230(2)$
$\mathrm{Zn} 1-\mathrm{N} 3$	$2.005(5)$	$\mathrm{Znl}-\mathrm{Cl1}$	$2.247(2)$
$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{N} 3$	$111.15(19)$	$\mathrm{Cl} 2-\mathrm{Zn} 1-\mathrm{Cl1}$	$114.59(8)$
$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{Cl} 2$	$109.90(14)$	$\mathrm{C} 3-\mathrm{N} 1-\mathrm{Zn} 1$	$128.6(4)$
$\mathrm{N} 3-\mathrm{Zn} 1-\mathrm{Cl} 2$	$106.42(15)$	$\mathrm{Cl}-\mathrm{Nl}-\mathrm{Zn} 1$	$125.4(4)$
$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{Cl1}$	$104.56(15)$	$\mathrm{C} 9-\mathrm{N} 3-\mathrm{Znl}$	$129.8(4)$
$\mathrm{N} 3-\mathrm{Zn} 1-\mathrm{Cl1}$	$110.31(15)$	$\mathrm{C} 6-\mathrm{N} 3-\mathrm{Znl}$	$123.5(4)$

Table 2. Hydrogen-bonding geometry ($\AA,^{\circ}$)

D-H..A	D-H	$\mathrm{H} \cdots \mathrm{A}$	$D \cdots A$	$D-\mathrm{H} \cdots \mathrm{A}$
$\mathrm{Ol}-\mathrm{Hl} \cdots \mathrm{Cl}^{1}$	1.08	1.99	3.071 (7)	176.0
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{Ol}{ }^{\text {ii }}$	1.05	2.35	2.767 (10)	102.1
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 2^{11}$	1.05	2.41	2.877 (14)	106.1

Hydroxy H atoms were fixed at positions found in a difference map. Other H_{o} atoms were refined using a riding model, with $U(\mathrm{H})=0.08 \AA$.

Data collection: R3m Software (Siemens, 1990). Cell refinement: R3m Software. Data reduction: SHELXTL-Plus (Sheldrick, 1990). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997b). Molecular graphics: ORTEP-3 for Windows (Farrugia, 1997). Software used to prepare material for publication: SHELXL97.

We acknowledge financial support from the NSFC and Zhongshan University. S-PY thanks the Ma Can-an Foundation for the award of a scholarship. We are also indebted to the Chemistry Department of the Chinese University of Hong Kong for donation of the $R 3 m$ diffractometer.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: CF1299). Services for accessing these data are described at the back of the journal.

References

Bear, C. A., Duggan, K. A. \& Freeman, H. C. (1975). Acta Cryst. B31, 2713-2717.
Chen, X.-M., Huang, X.-C., Xu, Z.-T. \& Huang, X.-Y. (1996). Acta Cryst. C52, 2482-2484.
Chen, X.-M. \& Mak, T. C. W. (1991). Inorg. Chim. Acta, 182, 139144.

Chen, X.-M., Xu, Z.-T. \& Huang, X.-C. (1994). J. Chem. Soc. Dalton Trans. pp. 233I-2332.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Kimura, E., Kurogi, Y., Shionoya, M. \& Shira, M. (1991). Inorg. Chem. 30, 4524-4529.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Pallee, I. \& Henning, L. (1966). Acta Chem. Scand. 20, 2649-2651.
Sheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997a). SHELXS97. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Siemens (1990). R3m Software. Version 4.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1999). C55, 871-873

Disodium 4,4'-difluoro-3,3'-carbonyldibenzenesulfonate hydrofluoride tetrahydrate

Feng Wang, Yinghua Qi, Tianlu Chen, Yan Xing, Yonghua Lin and Jiping Xu
Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China. E-mail: szliu@mail.interflow.com.cn

(Received 11 June 1998; accepted 7 December 1998)

Abstract

The structure determination of the title compound, $2 \mathrm{Na}^{+} \cdot \mathrm{C}_{13} \mathrm{H}_{6} \mathrm{~F}_{2} \mathrm{O}_{7} \mathrm{~S}_{2}^{2-} \cdot \mathrm{HF} \cdot 4 \mathrm{H}_{2} \mathrm{O}$, indicates that intermolecular physical crosslinking through Na^{+}ions exists in the crystal so that ionic aggregates are formed.

Comment

Sulfones have received considerable attention owing to their high performance in the membrane separation process (Ueda et al., 1993; Wang et al., 1998). This method of synthesizing sulfonated polymers via nucleophilic polycondensation of disodium 4,4'-difluoro-3,3'carbonyldibenzenesulfonate hydrofluoride tetrahydrate, (I), and bis-phenols is more advantageous than traditional routes of polymer sulfonation, and polymers thus obtained are suitable for gas dehumidification and ionexchange membranes.

(I)

Fig. 1 shows the molecule with the atom-numbering scheme and Fig. 2 illustrates the intermolecular linking through Na^{+}ions. The phenyl rings are not coplanar; the torsion angle $\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 3-\mathrm{C} 4$ is $57.2(3)^{\circ}$, which is larger than the corresponding value of $47.1(1)^{\circ}$ in $4,4^{\prime}$ difluorobenzophenone (Maginn \& Davey, 1994), owing to the introduction of bulky sodium sulfonate groups. It can be seen from Fig. 2 that physical crosslinking through Na^{+}ions is present in the compound. The Na^{+} ions coordinate with water molecules, O atoms and the hydrofluoride F^{-}ion. The ionic aggregate is constructed through coordination of the different molecules with Na^{+}ions. The water molecules and F^{-}ion, as main ligands, strengthen the intermolecular forces.

